8-800-201-77-9010:00 - 22:00 мск
Заказать звонок
Задание 1 из 20:
Среди данных предложений найдите высказывание
Выберите правильный ответ:
Задание 2 из 20:
В предложении “Эльбрус является высочайшей вершиной Европы” темой является:
Задание 3 из 20:
В предложении “Треугольник не является многоугольником” ремой является:
Задание 4 из 20:
Среди представленных высказываний найдите истинное:
Задание 5 из 20:
Задание 6 из 20:
Среди представленных высказываний найдите ложное:
Задание 7 из 20:
Задание 8 из 20:
Среди представленных высказываний найдите истинное.
Задание 9 из 20:
Среди представленных высказываний найдите ложное.
Задание 10 из 20:
Определите истинность высказываний “Число $\displaystyle 6 $ составляет $\displaystyle 1\% $ от $\displaystyle 600 $ ”
Задание 11 из 20:
Определите истинность высказывания “ $\displaystyle 8\% $ от $\displaystyle 600 $ равны $\displaystyle 50 $ ”
Задание 12 из 20:
Выберите общее утверждение:
Задание 13 из 20:
Задание 14 из 20:
Определите истинность высказывания “Любое натуральное число делится на $\displaystyle 2 $ ”
Задание 15 из 20:
Выберите общее истинное высказывание:
Задание 16 из 20:
Выберите высказывание вида “Хотя бы один” (утверждение существования):
Задание 17 из 20:
Задание 18 из 20:
Определите истинность высказывания: “Существует натуральное число $\displaystyle x $, такое, что: $\displaystyle 9x $ $\displaystyle \gt 800 $”
Задание 19 из 20:
Выберите утверждение, для которого верно представлено доказательство.
Задание 20 из 20:
Докажи, что высказывание верно: “Существует натуральное число $\displaystyle x $ такое, что $\displaystyle (9x-6x+4x):4=28 $ ”
ДальшеПрервать тест
Это успех! Поздравляем!
Чтобы оставить свое имя в таблице результатов, нужно сдавать тесты после входа в МетаШколу с паролем...
Надо еще потренироваться, чтобы набрать хотя бы .
А чтобы оставить свое имя в таблице результатов, нужно успешно сдать тест после входа в МетаШколу с паролем.
Идет проверка ответов
Вернуться к списку тестов
Список курсов по школьной программе!
Автор теста - 5-6 класс Кучеренко Александра Дмитриевна, магистрант РГПУ им. А. И. Герцена, Санкт-Петербург
Чтобы задать вопрос по поводу олимпиады или конкурса, войдите в личный кабинет и перейдите по ссылке Поддержка.
Для вопросов по другим темам: